您的位置首页  散文精选

最大的负整数(最大的负整数的相反数)

有理数的概念定义:正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。如-1+=-|1+1|=-2、1.1+1.1=2.

最大的负整数(最大的负整数的相反数)

 

有理数的概念定义:正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数概况:有理数为整数和分数的统称正整数和正分数合称为正有理数,负整数和负分数合称为负有理数因而有理数集的数可分为正有理数、负有理数和零。

有理数的计算法则1)、有理数加法法则1.同号两数相加,把绝对值相加,所得值符号不变如-1+(-1)=-|1+1|=-2 、 1.1+1.1=2.22.异号两数相加,若绝对值不等,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

若绝对值相等即互为相反数的两个数相加得0如-1+2=+|2-1|=1 2+(-3)=-|3-2|=-1 -3.2+3.2=03.一个数同0相加,仍得这个数3.14+0=3.14注意:一是确定结果的符号;二是求结果的绝对值。

在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0从而确定用那一条法则在应用过程中,一定要牢记“先符号,后绝对值”,熟练以后就不会出错了多个有理数的加法,可以从左向右计算,也可以用加法的运算定律计算,但是在下笔前一定要思考好,哪一个要用定律哪一个要从左往右计算。

2)、有理数减法法则减去一个数,等于加这个数的相反数两变:减法运算变加法运算,减数变成它的相反数做加数一不变:被减数不变可以表示成: a-b=a+(-b)3)、有理数乘法法则1.两数相乘,同号为正,异号为负,并把绝对值相乘。

2.任何数同0相乘,都得03.乘积为1的两个有理数互为倒数4.几个不是0的数相乘,负因数得个数是偶数时,积是正数;负因数的个数是奇数时,积是负数5.几个数相乘,如果其中有因数为0,那么积等于04)、有理数除法则

1.除以一个不等于0的数,等于乘这个数的倒数2.两数相除,同号得正,异号得负,并把绝对值相除3.0除以任何一个不等于0的数,都得0注意:0不能做除数5)混合运算有理数的加减乘除混合运算,如无括号指出先做什么运算,按照“先乘除,后加减”的顺序进行,如果是同级运算,则按照从左到右的顺序依次计算。

有理数的分类(1)按有理数的定义: 正整数 整数{ 零 负整数有理数{ 正分数 分数{ 负分数(2)按有理数的性质分类: 正整数 正数{ 正分数有理数{ 零 负整数 负数{ 负分数有理数的练习

1.下列命题中不正确的是( )A. 整数和有限小数统称为有理数 B. 无理数都是无限小数 C. 数轴上的点表示的数都是实数 D. 实数包括正实数,负实数和零2.下列说法中正确的是( )A.正数和负数互为相反数

B.0是最小的整数 C.在数轴上表示+4的点与表示﹣3的点之间相距1个单位长度 D.所有有理数都可以用数轴上的点表示3.下列说法:①0 是绝对值最小的有理数;②相反数大于自身的数是负数;③数轴上原点两侧的数互为相反数;

④两个数相互比较绝对值大的反而小.其中正确的是( )A.①②B.①③C.①②③D.②③④4.下列说法正确的是( )A.有理数都是有限小数B.无理数都是无限小数 C.带根号的数都是无理数D.数轴上任何一点都表示有理数

5.下列说法中,正确的是( )A.有理数分为正有理数和负有理数 B.在数轴上表示﹣a的点一定在原点的左边 C.任何有理数的绝对值都是正数 D.互为相反数的两个数的绝对值相等6.下列说法正确的是( )A.有理数分为正数和负数

B.是所有的有理数都能用数轴上的点表示C.若数轴上的点A在点B的右边,则点A比表示的数比点B表示的数小D.有理数中,没有最大的有理数,也没有最小的有理数7.下列说法正确的有( )①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;

③有理数分为正有理数和负有理数;④a+5一定比a大;⑤在数轴上7与9之间的有理数是8.A.2个B.3个C.4个D.5个8.根据以下各数:+2,-(+4),

,|-3.5|,0,-3,回答问题(1)上面各数中,正分数有:______,负整数有:________,整数有:_______(2)在数轴上表示上面各数,再用“<”号把各数连接起来答案:A D A B D D B。

解:(1)正分数有:

;负整数有:-(+4),-3;整数有:+2,-(+4),0,-3;(2)解:数轴如下:

-(+4)<-3<0<+2<

<|-3.5|。

免责声明:本站所有信息均搜集自互联网,并不代表本站观点,本站不对其真实合法性负责。如有信息侵犯了您的权益,请告知,本站将立刻处理。联系QQ:1640731186